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ABSTRACT

Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic
distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is
expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it
to persist. A species’ probability of presence can be quantified as a combination of responses toB, A, andM via ecological
niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach
has been used broadly in ecology and biogeography, as well as in conservation planning and decision-making, but
commonly in the context of ‘natural’ settings. However, it is increasingly recognized that human impacts, including
changes in climate, land cover, and ecosystem function, greatly influence species’ geographic ranges. In this light,
historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human–natural
landscape is recognized as the new norm. Therefore, B, A, andM (BAM) factors need to be reconsidered to understand
and quantify species’ distributions in a world with a pervasive signature of human impacts. Here, we present a frame-
work, termed human-influenced BAM (Hi-BAM, for distributional ecology that (i) conceptualizes human impacts in
the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and spe-
cies’ distributions. Given the importance and prevalence of human impacts on species distributions globally, we also dis-
cuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing
human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies
should incorporate signals of human impacts integrally in modeling and forecasting species’ distributions.

Key words: Anthropocene, climate change, ecological niche, evolution, invasive species, urbanization, geographic
distribution.
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I. INTRODUCTION

Species have predictable distributional patterns in geographic
spaces. The relationship between a species’ geographic distri-
bution and the environment has been a central question in
ecology and biogeography, and many theoretical discussions
of this relationship stem from the concept of ecological niche.
Hutchinson’s definition of fundamental niche has seen wide
acceptance: in the hyper-volume space composed of environ-
mental variables, ‘a set of points, each one of which defines a
possible set of environmental values permitting the species to
live (Hutchinson, 1978, p. 160)’ or ‘to exist indefinitely’
(Hutchinson, 1957, p. 416).

In recent decades, correlative approaches have been used
to quantify relationships between species’ occurrence and
environmental conditions (e.g. climate, topography); this
approach is termed ecological niche modeling (ENM) or
species distribution modeling (SDM) (Franklin, 2010;
Peterson et al., 2011). A distinction can be made between
the two terms in that ENM aims to estimate the species’
ecological niche in environmental space, whereas SDM
emphasizes the species’ distribution in geographic space
(Peterson & Sober�on, 2012); in practice, the two terms refer
to much the same set of analyses and are commonly used
interchangeably in the literature. Recent advancements in
primary biodiversity data digitization, environmental
monitoring, and modeling algorithms and software have
greatly promoted development of this field (Franklin, 2010).
ENM/SDM has been applied broadly in biodiversity conser-
vation, for invasive species management, estimating distribu-
tions of species of conservation concern, and aiding in rare
species surveys (Peterson et al., 2011; Guisan et al., 2013).

The development and broad application of ENM/SDM
was built on fundamental and theoretical work that under-
pins this field. Notably, the conceptualization of the BAM
framework (Sober�on & Peterson, 2005) and the critical

discussion of niche concepts and species’ geographic distribu-
tions (Sober�on, 2007; Sober�on & Nakamura, 2009) have
influenced the development and use of ENM/SDM. As spe-
cies are distributed in predictable ways in geographic spaces,
factors that determine these patterns can be classified into
three categories: biotic interactions (B), abiotic conditions
(A), and dispersal ability or mobility (M). In brief, a species is
expected to be present in areas with suitable biotic interactions
and abiotic conditions and that have been accessible to the
species via dispersal over relevant time periods. As such, the
probability of a species’ presence can be quantified as a func-
tion of its mobility and its responses to and requirements of
abiotic and biotic factors.
It is increasingly recognized that human impacts, including

global warming, land cover change, and ecosystem changes,
strongly affect species’ geographic ranges (Ellis, 2015).
Historical distinctions between natural and human-impacted
areas have become blurred, and a coupled, human–natural
landscape is recognized as the new norm. Therefore, the need
to rethink the ecological basis of ENM/SDM becomes a
crucial step to improve understanding and quantifying of
species’ distributions in a world with pervasive signatures of
human impacts.
BAM provides a solid conceptual framework for studying

species’ ecological niches and geographic distributions, but is
clearly cast in large part in natural settings and does not con-
sider anthropogenic effects directly and integrally. In the con-
text of the Anthropocene, characterized by increasing
impacts from human activities (Steffen et al., 2015; Steffen,
Crutzen & McNeill, 2007), the three dimensions of BAM and
the associated assumptions need to be re-evaluated to incorpo-
rate the effects of human impacts. Put another way, distribu-
tional estimates and forecasts in ENM/SDM are based on
relationships between geographic distributions and environ-
mental factors; these relationships can be altered profoundly
by human activities, thus requiring reconsideration of the
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underlying theory to account for human impacts
appropriately.

Here, we present a revised synthesis of distributional
ecology in a framework that conceptualizes factors related
to human activities (anthropogenic factors) in six major cate-
gories (Table 1). We have organized this synthesis around the
widely adopted BAM framework. We discuss how each
anthropogenic driver directly or indirectly affects species’ dis-
tributions by modifying the natural setup ofB, A, andM and
term this expanded framework human-influenced BAM (Hi-
BAM; Fig. 1, Table 1). We discuss implications of such
changes for ENM/SDM methods, and explore strategies by
which to incorporate increasing human impacts in the meth-
odology (Table 2).

II. OVERVIEW OF HUMAN IMPACTS ON BAM

The impacts of anthropogenic activities on the Earth’s
ecosystems and biodiversity have been discussed frequently
in the literature and conceptualized as different groups of
drivers (Salafsky et al., 2008; Franklin et al., 2016; Kelly
et al., 2020; Uchida et al., 2021; Fenoglio et al., 2021). Herein,
we summarize human impacts in terms of six major groups of
drivers based on a conceptual framework for understanding
species’ geographic distributions (Table 1).

(1) Human introduction of non-native species

Humans can affect species’ distributions directly by inten-
tionally or unintentionally introducing species outside of
their native ranges, and these activities can break down
biogeographic boundaries and redefine biodiversity patterns
(Capinha et al., 2015; Fricke & Svenning, 2020). Such
introduction effects span the full taxonomic and functional
spectrum, including animals, plants, viruses, bacteria, and
fungi, and are noticeable at global scales; these effects will
likely continue to increase with globalization (Seebens
et al., 2017).

Humans began introducing species intentionally in the
form of domesticated animals and crop plants across global
landscapes since the earliest times in recorded human history
(Ahmad et al., 2020). In modern times, effects of human
introductions have been intensified by enhanced mobility
(e.g. cars, trains, ships, aeroplanes), evidenced by the well-
known 100 worst invasive species across the world
(Lowe et al., 2000). For example, the house rat (Rattus rattus),
native to India, has been introduced unintentionally to all
continents. The earliest known pandemics of plague (Yersinia
pestis) were limited to Eurasia, but global-scale ship
movements allowed the Third Pandemic of plague to reach
ports worldwide (Frith, 2012). In many other cases, species
introductions were intentional, for example as biological con-
trol (cane toad, Rhinella marina) (Shanmuganathan et al., 2010)
or food sources (giant African snail, Lissachatina fulica)
(Thiengo et al., 2007). Note that species introductions and

range expansion are not necessarily international or inter-
continental, but can also be local or regional. For example,
the geographic distribution of Eastern redcedar (Juniperus
virginiana) has expanded to many grassland areas in the
USA because of fire suppression and certain land manage-
ment practices (Walker & Hoback, 2007).

Beside direct effects on species’ geographic distributions,
human-induced introductions of non-native species and
alterations to the environment can also have indirect effects
on species’ geographic distributions by changing the status
of biotic interactions (Young, 2014). A notable example is
that successful establishment of invasive species after
introduction can be attributed to release from predators or
pathogens (i.e. altered biotic context) (Urban, Zarnetske &
Skelly, 2013; Prior et al., 2015). Additionally, establishment
of invasive species can also lead to distributional changes of
species that are native to the invaded site. Indeed, the pres-
ence of cane toad, a well-studied invasive species, is associ-
ated with a 40% combined decline of local species richness of
reptiles, birds, and mammals in Australia (Jolly, Shine &
Greenlees, 2015).

(2) Human-induced climate change

Anthropogenic activities are changing the Earth’s climate at
global scale, with pervasive direct effects on species’ geo-
graphic distributions. Climate change is characterized by
an increase in global mean temperature, which leads to range
shifts poleward and to higher elevations for a wide variety of
plants, vertebrates, and invertebrates (Hickling et al., 2006;
Lenoir et al., 2008; Outhwaite, McCann & Newbold, 2022).
Importantly, global warming is accompanied by more
frequent extreme weather and climate events (Stott, 2016),
such as floods, drought, and heatwaves, which are associated
with large-scale die-off events (Welbergen et al., 2008; Jones
et al., 2018; Hammond et al., 2022). These extreme events
play an important role in determining species’ range boundaries
(Smale & Wernberg, 2013; Osland, Day & Michot, 2020).

Further, broad-scale changes in plant species distributions
due to climate change can modify abiotic conditions, which
can subsequently affect geographic distributions of many
other species. Indeed, warming effects in Arctic regions can
be amplified by changes in albedo from forest cover loss
(Swann et al., 2010). In the Tropics, deforestation and fires
are continuously decreasing the extent of rainforest in the
Amazon Basin, with subsequent effects on regional climates
(e.g. drier) (Staal et al., 2020); by some estimates, at 25%
deforestation, the eastern, central, and southern Amazon
Basin could transition to non-forest ecosystems owing to
regional drier climate, triggering major compositional and
distributional changes of Amazonian biodiversity (Lovejoy &
Nobre, 2018).

(3) Human-induced land cover change

Another global-scale effect of anthropogenic activities is land
cover change (Foley et al., 2005). It is estimated that three-
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Fig. 1. Conceptual illustration of the effects of human-induced changes on biotic (B), abiotic (A) and mobility (M) factors that
determine species’ geographic distributions. Compared with natural settings, a species’ dispersal ability (red circle) could be greatly
reduced because of human-related restrictions (e.g. habitat fragmentation), thus becoming the most limiting factor for geographic
distribution (A), or be greatly increased via human introduction (B, C), and thus no longer a limiting factor for geographic
distribution (C). The original intersection of biotic, abiotic, and mobility factors is shown in green and the new or additional
intersection is shown in blue. (D) The abiotic niche of a species in an environmental space (temperature and precipitation). The
species is present in conditions (gray points) inside the abiotic niche (black circle). Human-driven climate change may create novel
environmental conditions. Some novel conditions are inside the abiotic niche (green points) and may be occupied by the species,
whereas some novel conditions are outside the abiotic niche (red crosses); the latter conditions may become suitable for a species in

(Figure 1 legend continues on next page.)
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quarters of global land area have been modified by humans
in the past millennium, and one-third of global land area
has been modified at least once in the past six decades
(Luyssaert et al., 2014; Arneth et al., 2019; Winkler
et al., 2021). This massive scale of land cover change has
caused habitat loss and degradation and biodiversity loss
(Pimm&Raven, 2000; Foley et al., 2005). Anthropogenic land
use also leads to habitat fragmentation and decreased connec-
tivity of species’ populations (Fischer & Lindenmayer, 2007;
Tucker et al., 2018). The biotic factors within a species’
geographic range, such as food sources and community com-
position, can also be modified by land cover change
(Fuller, 2000; Tsiafouli et al., 2015; Sreekar et al., 2017).

(4) Human-induced pollution

The effects of anthropogenic activities extend beyond climate or
land cover changes, to worldwide pollution of the air, land, and
fresh and saltwater environments. Such pollutants include toxic
chemicals, plastics, artificial light, and noise (Tyler Miller &
Spoolman, 2015), among others. Those pollutants have led to
spatial and temporal changes in animals’ activity and geographic
distributions (Overton et al., 2022; La Sorte et al., 2022). For
example, one-third of the examined passerine species were
found to have reduced abundance around noise-generating
compressor stations (Bayne, Habib & Boutin, 2008). Conse-
quently, a large body of literature is focused on selecting indica-
tor species that are sensitive to environmental change (Siddig
et al., 2016), especially pollutants, such as lichens for air pollution
and amphibians for water pollution.

Impacts of pollution on biodiversity are not only local, but
also pronounced at continental scales. For example, it is esti-
mated that one fifth of the land area in the USA is impacted
by traffic noise (Forman, 2000), and noise pollution has
become an important perturbation of breeding distributions
of bird species in North America (Klingbeil et al., 2020). Plas-
tic pollution is known to pose threats to seabirds globally
(Wilcox, Van Sebille & Hardesty, 2015). While pollution
can restrict geographic distributions of many species (Finn,
Grattarola & Pincheira-Donoso, 2023), different species will
likely exhibit varying degrees of resilience to human pollu-
tion, thus leading to shifts in community composition and

changes in biotic interactions (Newman, Schreiber &
Novakova, 1992; Bergmann et al., 2017).

(5) Humans as biotic agents

Humans can also play a major and multifaceted role as a
biotic agent in interspecific interactions that affect species’
geographic distributions across space and time. Humans
are consumers of many species, with effects that range from
decreased abundance to local extirpation or global extinction
(Faillettaz et al., 2019; Ripple et al., 2019). Humans also com-
pete with other species for habitat and a variety of resources;
for example, competition with carnivores for prey has
affected carnivore range dynamics (Mech, 1995; Treves &
Karanth, 2003). Humans can also play a positive role for
some species. For example, conservation management
actions can be critical for persistence of endangered species
(Xu et al., 2017); humans also act as efficient seed dispersers
for crop species and many species considered as invasive
(Ditmer et al., 2021).
Besides having direct biotic effects, humans can also inter-

act indirectly with other species through encroachment and
disturbance (Salafsky et al., 2008), affecting the spatial
and temporal dynamics of species’ geographic distributions.
For example, disturbances can be caused by recreational
activities on public lands, with many species avoiding such
disturbance by shifting their spatial and temporal presence
(Filla et al., 2017; Yang et al., 2019). This effect can cascade
in food webs and modify the spatial and temporal presence
of additional species (Muhly et al., 2011; Ripple &
Beschta, 2006); similar effects also have been noted in
response to artificial nighttime lights in anthropogenic land-
scapes (Ditmer et al., 2021).

(6) Humans as selective and evolutionary drivers

Anthropogenic effects on B, A, and M can be both extrinsic
and intrinsic to a species. Extrinsically, human-induced
changes can alter community composition, abiotic condi-
tions, and the physical template for species’ dispersal
(Fig. 2). Intrinsically, humans can pose direct and indirect
selection pressures on species, such as tolerance of novel abi-
otic conditions, capacity for interacting with novel species,

(Figure legend continued from previous page.)
the case of ecological niche evolution, such as the species becoming more heat tolerant (blue points). (E) In addition to the classic
abiotic conditions, other human-generated factors are known to affect species’ geographic distributions, which can increase the
dimensionality when delineating the ecological niche (blue axis in E). (F–K) The biotic interactions (B) that determine a species’
geographic distribution can also undergo various changes. Different species are represented by circles, their interactions are
represented by solid lines (gray for natural connections and red for novel connections), and lost interactions are represented by
dotted lines. (F) A biotic network of four species in a focal species’ native range (species that interacted with the focal species in the
native range are represented by gray circles). Because of human effects, the network could face changes in the strength (increased/
decreased), quantity (more/fewer), and structure (simpler/more complex) of biotic interactions in the native range (G). In extreme
cases, humans become the dominant factor in the network of biotic interactions (H). A focal species introduced outside the native
range will face novel biotic interactions with the native species in the introduced range (gray squares) (I); it is possible for the focal
species to interact with other introduced species (red circle) (J) or interact with species introduced from the focal species’ native
range (gray circle) (K) but in the context of the introduced range.
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and dispersal ability for maintaining existing or colonizing
new sites (Otto, 2018) (Fig. 2). Rapid evolution directly or
indirectly associated with human-induced changes has been
documented in an increasing number of cases (Feder, 2010;
Hoffmann & Sgrò, 2011; Diamond, 2017; Schilthuizen, 2019;
Catullo et al., 2019). Evidence is accumulating regarding the
implications of climate change for rapid evolution of heat toler-
ance [e.g. water fleas (Geerts et al., 2015); fishes (Ljungfeldt
et al., 2017); ants (Diamond et al., 2017)] and cold tolerance
[e.g. fishes (Barrett et al., 2011); beetles (Tian et al., 2022)].

Besides temperature, rapid evolution has also been
documented in species’ tolerances to drought, salinity, and
pollution (Franks et al., 2016; Turko et al., 2016; Coldsnow
et al., 2017; Lee et al., 2011). Landscape fragmentation caused
by human activities not only affects distances that species are

able to disperse, but can also select for lower dispersal
capacity (Cheptou et al., 2008). On the other hand, selection
for higher dispersal capacity is more frequent during biolog-
ical invasions (Alford et al., 2009; Hudson et al., 2016;
Ochocki & Miller, 2017). In communities modified by human
activities, cases of evolutionary change have been documented
in response to novel hosts (e.g. phytophagous insects shift onto
exotic host plants), competitors (e.g. character displacement
between native and introduced fish species), predators
(e.g. morphological responses of native prey to introduced
predators), as well as evolved resistance in response to novel
diseases (reviewed in Strauss, Lau & Carroll, 2006).

Note that the various responses to anthropogenic changes rest
on the underlying genetics of a species. Besides direct human
impacts on a species’ genetic makeup (e.g. domestication;

Table 2. Challenges for ecological niche modeling/species distribution modeling (ENM/SDM) in the context of human impacts and
strategies to mitigate or address these challenges. BAM encompasses biotic interactions, abiotic conditions, and dispersal ability.

BAM factor
Challenges for ENM/SDM in the context of human
impacts

Strategies to mitigate or address the challenges

A Model extrapolation, although commonly associated
with high uncertainty, is usually unavoidable and
frequently can be involved in forecasting range
dynamics because environments are changing
rapidly with human activities.

(i) Quantify environmental novelty as a proxy to infer
the uncertainty of predictions [see methodology in
Elith et al. (2010) and Owens et al. (2013)].

(ii) Select model settings to enhance model spatial/
temporal transferability through model tuning
[see methodology in Muscarella et al. (2014) and
Valavi et al. (2019)].

(iii) Incorporate biologically meaningful information
in model fitting to enhance model extrapolation
[see case studies in Calleja et al. (2020), Gamliel et al.
(2020), and Feng et al. (2020)].

A In addition to the commonly considered abiotic
conditions (e.g. climate), the fundamental niche can
be measured with environmental conditions that are
driven by human activities, such as land use,
chemical pollution or anthropogenic light and
sound conditions that can limit (or facilitate) species’
geographic distribution to varying degrees.

Incorporate appropriate human-related variables in
model training and forecasting, with the
consideration of focal species, spatial–temporal
scale, and complexity of the response types [see use
of human footprint for invasive species in Gallardo
et al. (2015) and use of artificial night light and
anthropogenic noise for birds inWilson et al. (2021)].

A Species’ geographic distributions are experiencing a
more rapid rate of change under accelerating
human-induced environmental changes, thus we
need a more dynamic view in modeling species’
geographic distributions.

(i) Incorporate environmental data at fine spatio-
temporal scales to capture the rapidly changing
environments. See applications for bats (Hayes
et al., 2015) and birds (Runge et al., 2015).

(ii) Enhance the spatial and temporal match between
species’ occurrence data and environmental data.
See example in Bateman et al. (2012).

M Human-mediated dispersal and human-modified
landscapes can greatly alter species’ mobility, and
thus their geographic distributions; therefore the
view of natural dispersal capacity and natural
barriers should be reconsidered in the context of
human impacts.

Consider species’ mobility in the context of human
impacts when designing a model-training domain
and conducting model projections.

B The assumption of relatively static biotic interactions is
more likely to be violated under scenarios of climate
change, species range shifts, or human
introductions.

Integrate human-induced dynamics of biotic
interactions in modeling species’ geographic
distributions, such as using the presence,
abundance, or suitability of relevant species as
predictors (Kass et al., 2020), modeling the
co-occurrences of multiple species
(Pollock et al., 2014), and using traits to infer
potential biotic interactions (Caron et al., 2022).
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Young, 2016), ‘hidden’ pathways affecting genetics of a
species, either intentional, incidental, or accidental, can have
implications for changes in BAM and geographic distribution
of a species. For example, human-mediated introductions repre-
sent a pathway that can modify gene flow among populations,
thus affecting adaptation of populations in the introduced range
(Storfer, 1999; Barbour, Potts & Vaillancourt, 2003). Introduc-
tion of transgenic DNA through escaped genetically modified
salmon (Smith et al., 2010) and pollen from transgenic crops
(Warwick et al., 2003) can have consequences for the species’wild
populations or their relatives.Reductions in population size lead-
ing to bottlenecks and enhanced drift (Willi, Griffin & Van
Buskirk, 2013) can alter trajectories of population responses to
human impacts (Kayanne et al., 2022). Lastly, pronounced cases
of natural resources exploitation can lead to selection
(e.g. reduced body size, earlier sexual maturity, reduced antler
size, increased timidity) that would likely affect each BAM com-
ponent (Andersen, Marty & Arlinghaus, 2018; Allendorf &
Hard, 2009).

(7) The socioeconomic context

Importantly, the impact of the six major anthropogenic
drivers on species’ geographic distributions can vary with
socioeconomic conditions, including cultural, demographic,
economic, political, and institutional (Kelly et al., 2020;
Uchida et al., 2021). For example, introduction of non-native
species is closely associated with economic activities,
especially international trade (Chapman et al., 2017;
Hulme, 2021), and the issue of invasive species can be medi-
ated by human culture and policies (Robbins, 2004; Reino
et al., 2017). The spatial distribution of environmental
impacts, such as air pollution, greenhouse gas emissions,

and deforestation, depends strongly on human density, eco-
nomic status, and environmental policies (Bradshaw,
Giam & Sodhi, 2010; Feng et al., 2021).

III. IMPLICATIONS AND CHALLENGES OF
HUMAN IMPACTS FOR ENM/SDM

(1) Human activities can directly and indirectly
affect B, A, and M

In this section, we conceptualize human impacts on species’
geographic distribution in the context of the BAM frame-
work (Fig. 1). First,M could expand or contract with human
activities (Fig. 1A–C), leading to new configurations of B, A,
andM factors. In extreme cases, whenM is very limited, the
species’ geographic distribution will be equivalent to M,
whereas B and A will not be limiting factors (Fig. 1A); when
M is extremely broad, the species could occur at any site with
suitable A and B factors (Fig. 1C). Compared with the classic
setup of the BAMdiagramwhere B, A, andM all intersect each
other, the extremely limited or expanded M constitutes simpler
scenarios that may reduce the complexity of model consider-
ations and thus potentially enhance model performance.
Owing to climate change and various other anthropogenic

global changes, novel combinations of environmental condi-
tions are emerging across geographic space. Some of these
novel conditions are within the species’ abiotic niche, and
can potentially be occupied by the species; other novel condi-
tions may be beyond a species’ tolerance (Fig. 1D). Besides the
non-analogue conditions relative to present (e.g. extreme
temperature and precipitation), conditions generated by
human activities such as chemical pollution [e.g. pesticides

Fig. 2. Conceptual illustration of human impacts on biotic (B), abiotic (A) and mobility (M) factors. Humans can directly affect all
parts of the BAM framework and species’ geographic distributions via acting as a biotic agent, by human-generated environmental
conditions, and by human-mediated dispersal. Human impacts can also lead to extrinsic and intrinsic changes to BAM.
Extrinsically, human-induced changes can alter community composition, abiotic conditions, and the physical template for species’
dispersal. Intrinsically, humans can also impose direct and indirect selection pressures on species, such as tolerance of novel abiotic
conditions, capacity for interacting with novel species, and necessary dispersal ability for maintaining existing or colonizing new sites.

Biological Reviews (2024) 000–000 © 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

8 Xiao Feng and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13077, W

iley O
nline L

ibrary on [10/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Simonich &Hites, 1995); plastics (Du et al., 2022)] and built
environments [e.g. dams (Zhang & Gu, 2023); roads (Grilo
et al., 2021)] are also emerging as important factors in deter-
mining species’ distributions (Fig. 1E). Such conditions
(e.g. pollution, artificial light, noise) may have not existed
before, or played only weak roles compared with natural
conditions (e.g. climate). These novel conditions could
be treated as additional dimensions in Hutchinson’s
hyper-volume niche space (Hutchinson, 1957).

Similarly, those new considerations of A can lead to new
configurations of B, A, and M factors. The emergence of
suitable novel conditions (and novel combinations of condi-
tions) can lead to an expanded A. Loss of previously existing
suitable conditions (or combinations of conditions) can
restrict A. Changes in physiological tolerances of species to
abiotic conditions expand or restrict A. Many human-
generated factors (e.g. pollution, noise) can reduce the geo-
graphic distributions of many species, thus one may expect
many species to show a restricted A (Finn et al., 2023). Some
species are ‘winners’, with stable or expanded A, especially
those with traits that facilitate coping with, or rapid
evolutionary adaptation to, human-generated factors
(Sih, Ferrari & Harris, 2011). For example, plant species with
tolerance to anthropogenic pollution are associated with col-
onization of metal-polluted habitats (Meyer et al., 2016), and
bird species that vocalize at higher frequencies are known to
inhabit noisy urban areas (Hu & Cardoso, 2009).

The natural settings of biotic interactions also face various
changes as a result of human activities. For example, if natu-
ral biotic interactions are visualized as a network (Fig. 1F)
where nodes represent species and width of connectors
between nodes (i.e. edges) represents strength of interactions,
the numbers of edges could decrease owing to species extinc-
tion; the strength of interactions could change as well
(Fig. 1G). Humans can also become amajor or the only inter-
acting node for a focal species due to the extinction of other
species (Fig. 1H; here termed the human-dominant network
hypothesis). In the scenario of an introduced species, the
novel species could be exposed to the biotic network of the
introduced range (Fig. 1I). In cases of multiple introductions,
species from the same or different origins may form entirely
novel biotic networks in the introduced range (Fig. 1J, K).

The various types of biotic interactions can be grouped
based on their effects on the focal species. For example,
competition has negative effects on the interacting species,
mutualism has positive effects, and commensalism effects
are positive for one and neutral for the other species. In
theory, biotic interactions could be integrated in a unified
modeling framework, which will inform the changes
(expanded or restricted) to B under human impacts
(Fig. 1F–K), although many challenges exist as regards
observing, measuring, and modeling these interactions in
practice (Catchen et al., 2023; Strydom et al., 2021).

Note that human-induced changes in B, A, and M may
have interactive effects. Human introductions of species
could directly increase the area accessible to species (M),
and thus could lead to expanded accessibility to novel

abiotic and biotic conditions. Changes in community com-
position (B) may occur because species can respond differ-
ently to environmental changes (A); changes to spatial
configuration of environmental conditions on a landscape
can affect the dispersal (M) cost of species as well. Changes
to B caused by humans could lead to changes to M (e.-
g. decreased M due to loss of pollinators or seed dispersers
of plant species). Changes in B over a large spatial extent
can trigger changes in A (e.g. deforestation-induced
regional climate change in the Amazon Basin).

(2) The effects of human drivers can vary over
spatial and temporal scales

The temporal and spatial context of a research question
requires careful consideration of possible anthropogenic
effects on predictor variables and species’ records, and the
implications of these effects on ENM/SDM. Humans have
used and altered natural landscapes for millenia, and the
intensity of human impacts has increased particularly since
1950, which is known as the start of the ‘great acceleration’
(Steffen et al., 2015, 2007). For example, in Europe, the
expansion of human populations during the Neolithic has
been linked to gradual continental forest fragmentation and
deforestation (Roberts et al., 2018). While deforestation rates
vary temporally and spatially, in the last few decades the
intensification of land use has increased the area of young
forest stands globally from 11.3% in 1900 to 33.6% of forest
area in 2015 (McDowell et al., 2020). Substantial, accelerated
forest cover loss was reported in the last decade in the
Brazilian Amazon Basin (Trancoso, 2021).

Human impacts on the geographic ranges of species likely
began tens of thousands of years ago. A global analysis of
mammal distributions found that global, regional, and local
extinctions by humans over the last 130,000 years have
substantially altered mammal diversity patterns (Faurby &
Svenning, 2015). In more recent times, beginning in the
18th century, some North American ungulates and carni-
vores experienced over 50% contraction of historical ranges;
others shifted their ranges, and a few species, such as raccoon
(Procyon lotor) and coyote (Canis latrans), experienced range
expansions (Laliberte & Ripple, 2004). In the last 50 years,
extinction risk has increased for about 23% of carnivores
and ungulates worldwide (Di Marco et al., 2014). More
generally, human pressures (e.g. human population growth
and density) are strong predictors of geographic ranges of
92% of terrestrial mammals (Di Marco & Santini, 2015).

The effects of anthropogenic activities also vary with
spatial scale (grain and extent) and may extend across scales
(i.e. teleconnections; Heffernan et al., 2014). Locally, removal
of forest cover creates hotter and drier microclimatic condi-
tions (Keenan &Kimmins, 1993); at regional scales, the ther-
mal environment is further modified by the interaction
between climate change and forest cover loss (Nowakowski
et al., 2017). Additionally, local microclimate conditions can
be influenced by human land use in the landscape matrix;
for example, proximity to urban centres can increase winter
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temperature of forest fragments (Latimer & Zuckerberg, 2017).
Urbanization can also impact energetic expenditures of spe-
cies as they alter their activity patterns (e.g. increased noctur-
nal activity, larger foraging areas), resulting in higher
energetic costs (Wang, Smith & Wilmers, 2017). More gener-
ally, species’ responses to urbanization are dependent on traits
such as mobility and habitat preference: plants with high
dispersal ability and narrow habitat preferences respond
positively to urbanization, while birds and butterflies with
similar traits (high mobility, specialists) respond negatively to
urbanization (Concepci�on et al., 2015).

When urbanization has positive effects on some species,
such as red fox (Vulpes vulpes), coyote, Eurasian badger
(Meles meles), and raccoon (Bateman & Fleming, 2012), it
can contribute to landscape-scale diversity of mammal com-
munities (Parsons et al., 2018). At a global extent, humans are
changing diversity patterns and community composition
(Young, 2014) by transporting species, thus rendering
environmental gradients (climatic, topographic) ineffective
as dispersal barriers, besides altering species’ dispersal limita-
tions. For example, plant communities in mountain regions
in Europe, North America, and South America share a few
dozen species as a result of long-distance dispersal of
Eurasian plant species by humans (Seipel et al., 2012).

The spatial and temporal variability of human impacts adds
more complexity to estimating species’ potential distributions.
Recent contractions in species’ ranges due to intensification of
human activities may introduce incorrect model assumptions
regarding species’ climatic suitability (Martínez-Freiría
et al., 2016). In a study evaluating climate change implications
on mammal distributions, models calibrated with contempo-
rary (1965–present) occurrence records of North American
mammals forecasted narrower future potential distributions
compared to models trained on historical records dating back
to the 1900s (Faurby & Araújo, 2018).

(3) Rethinking fundamental and realized niche
concepts in the context of human impacts

Ecological niche theory distinguishes two states of the niche:
fundamental and realized. Some reconsideration of the two
terms is needed in the context of human impacts. The
fundamental niche is defined in a hyper-volume within which
environmental conditions permit a species to persist indefi-
nitely (Hutchinson, 1957). In this context, the environment
is interpreted as abiotic conditions (or scenopoetic or
non-interactive variables; Hutchinson, 1978) that are not
modified by a species (in contrast to biotic or interactive
conditions; Peterson et al., 2011). In addition to the abiotic
conditions commonly analysed, such as climate and eleva-
tion, the fundamental niche can be measured or quantified
with environmental conditions that are driven or generated
by human activities (Fig. 1E), such as land use, chemical
pollution, or anthropogenic light and sound conditions.
Species have different tolerances with respect to these condi-
tions, and therefore these conditions exert different degrees
of limitation on the species’ geographic distribution. Similar

to classic, abiotic (scenopoetic) conditions, human-related
abiotic conditions are generally not modified by species.
Therefore, given the prevalence and magnitude of human
impacts across the globe, human-related abiotic conditions
should be included as additional dimensions (axes) of the
environment when measuring the hyper-volume of the fun-
damental niche (Fig. 1E).
The realized niche (i.e. the modification of the fundamen-

tal ecological niche by considerations of biotic interactions
and movement) can also be dramatically impacted by
human-induced changes in biotic interactions and dispersal
abilities. Species’ realized niches can expand with increased
dispersal ability, or when relieved from natural enemies, or
when the overall effect of biotic interactions favors a focal
species’ population growth; likewise, the realized niche can
contract in opposite situations. In an extreme scenario of
realized niche expansion, realized niches could be potentially
larger than the fundamental niche because of two human-
induced mechanisms. First, humans can create favorable abi-
otic conditions within an area naturally unsuitable for a spe-
cies’ long-term persistence. Examples could be individuals
living in zoos, botanical gardens, or nurseries that are outside
a species’ range (Sax, Early & Bellemare, 2013). Besides these
controlled or constrained examples, there are also cases from
more ‘natural’ settings. Multiple European bat species were
observed wintering in urban environments north of their his-
torical wintering range, likely because of the structural and
thermal habitat provided by cities (Sachanowicz et al., 2019;
Vlaschenko et al., 2023), and introduced bivalves overcame
cold temperature limitations by inhabiting thermal plumes
associated with a power plant (Simard et al., 2012;
Laine, 2006). From the perspective of geographical range,
these species could be considered as being present in loca-
tions with unsuitable conditions (i.e. outside the fundamental
niche) when measured at a coarse spatial resolution
(e.g. mean temperature across 100 km2); although one may
argue that conditions of the microhabitat at fine spatial scale
can still exist within a species’ fundamental niche.
The other human-induced mechanism through which a

species’ realized niche could be larger than its fundamental
niche is resource subsidy for species to overcome limiting
abiotic conditions and thus persist in naturally unsuitable
conditions. These human subsidies can drastically increase
the abundance of some species (e.g. 7–8 times for coyote,
cat, and red fox; reviewed in Newsome et al., 2015).
Abundance changes can occur within or outside a species’
geographic range. For example, human subsidies have
enabled establishment of red fox populations north of the
climate-imposed distribution limit (Elmhagen et al., 2017);
this may likely be a case where the realized niche is larger
than the fundamental niche, although the latter is more
commonly inferred than measured. The human interference
with a species’ realized niche is analogous to cases in which
facilitation between species in natural settings expands the
realized niche of a species beyond the fundamental niche
(Sober�on & Arroyo-Peña, 2017; Bruno, Stachowicz &
Bertness, 2003). Such cases may constitute exceptions to the

Biological Reviews (2024) 000–000 © 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

10 Xiao Feng and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13077, W

iley O
nline L

ibrary on [10/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



common assertion that the realized niche is a subset of the
fundamental niche (Hutchinson, 1957), although, to our
knowledge, this possibility has not been systematically evalu-
ated in the literature (Sober�on & Arroyo-Peña, 2017).

(4) Assessing the assumptions of ENM/SDM in the
context of human impacts

ENM/SDM builds upon several assumptions (Zurell et al.,
2020) that need to be considered before applying this model-
ing approach to various research questions. As humans are
changing environments and species’ geographic distribu-
tions, it is worth assessing whether the assumptions will hold
in this anthropogenic context, and whether cases of violation
of assumptions are frequent.

Equilibrium status assumes that a species is present at all
suitable locations and absent at all unsuitable locations
(Araújo & Pearson, 2005). However, the equilibrium status
of species’ geographic distribution is rarely evaluated (Foster,
Kharouba & Smith, 2022); given the dynamics of abiotic con-
ditions, dispersal limitations, and biotic interactions, the geo-
graphic distributions of many species likely deviate from
equilibrium to some degree (i.e. non-equilibrium) (Peterson
et al., 2011). From a more practical perspective, a dispersal-
based approach has been proposed and broadly used in the
ENM/SDM literature: instead of considering all locations
(e.g. the whole world or a continent), a study area
(or modeling domain) is defined based on species’ dispersal
ability in a spatial and temporal context, so that species’ distri-
bution data (presences and absences) can better fit the equilib-
rium assumption in this study area. For example, dispersal
distance (Feng & Papeş, 2015) or natural barriers (Cooper &
Sober�on, 2018) have been used to define a study area, as
opposed to political boundaries or worldwidemaps. However,
species’ natural dispersal ability can be greatly increased with
human introductions. In extreme cases in which a species
can potentially reach (or ‘explore’) anywhere through human
transportation, approaches based on natural dispersal will vio-
late the assumption of equilibrium. Human activities can also
restrict or impede species’ dispersal via built environments and
infrastructure (e.g. transportation systems). Therefore, refined
dispersal ability and artificial dispersal barriers (e.g. Taylor,
Papeş & Long, 2018) have to be considered in ENM/SDM
to fit better the assumption of equilibrium (see Section IV.4
for solutions). Note that equilibrium status discussed above is
commonly considered in geographic space and is different
from environmental equilibrium, which refers to occupying
all suitable abiotic conditions in the environmental space
(Foster et al., 2022). A species could reach environmental equi-
libriumwithout reaching geographic equilibrium (see example
in Foster et al., 2022), because one point in environmental
space can be represented by multiple locations in geographic
space (Sober�on & Nakamura, 2009); as such, environmental
equilibrium could be more applicable for making inferences
of the ecological niche, which is considered a goal of ENM
compared to SDM (Peterson & Sober�on, 2012).

In applications of correlative ENM/SDM, biotic interactions
are usually not quantified directly, and are generally assumed to
be uniform or at least weak across the geographic distribution
(or the modeling domain) of a species. This idea likely lies on
the macroecological assumption that biotic interactions are
more important determinants of species’ distributions at fine
spatial scales than at coarse spatial scales [termed the Eltonian
Noise Hypothesis (Pearson & Dawson, 2003; Peterson
et al., 2011)], besides the difficulty of quantifying biotic interac-
tions adequately. Overlooking biotic interactions is unsatisfac-
tory, and has led to ambiguity in the interpretation of the
modeling goal: neither fundamental niche nor realized niche,
but something in between (Sober�on & Nakamura, 2009). Nev-
ertheless, the assumption of constant biotic interactions may still
largely hold if the model is only applied to the study area or the
modeling domain where the species distribution data were col-
lected. This assumption is more likely to be violated when the
model is transferred across space and/or time, because the net-
work of biotic interactions can face dramatic, or even unpredict-
able, changes compared with the natural setting of the native
area (Fig. 1). Biotic interactions can no longer be assumed to
be constant because novel communities can be formed under
scenarios of climate change, species range shifts, or human
introductions, thus the identities of the species that would inter-
act with a focal species, as well as the strength of these interac-
tions, are expected to deviate from the natural settings.

Commonly, the calibratedmodel is projected to another land-
scape and/or time where the environmental conditions could be
outside the range of the calibration data and thus lead to model
extrapolations. Model extrapolations are not supported by data,
but rather rely on model assumptions (Gelman & Hill, 2006)
and thus are potentially highly inaccurate. It is worrisome that
model extrapolation can be common when forecasting species’
distributions because of rapidly changing environments
(Williams & Jackson, 2007). Therefore, assumptions used in
model extrapolation should be re-evaluated.

One major assumption is that the relationships obtained
from training occurrences and abiotic predictors will still hold
when the model is projected to novel abiotic values (Jiménez-
Valverde et al., 2009). Therefore, the reliability of model pre-
dictions depends on two circumstances: (i) the training data
are representative of the fundamental niche; and (ii) the funda-
mental niche does not change (i.e. is conserved) over relevant
timescales (Peterson, Sober�on & Sanchez-Cordero, 1999).
The first circumstance can easily be violated as a species rarely
occupies its potential distribution fully owing to biotic and dis-
persal limitations (with the exception of humans or species
introduced by humans globally), so the occupied environmen-
tal conditions rarely fully represent its fundamental niche;
another insuperable reality is that not all combinations of envi-
ronmental conditions are represented in the geographic space
at a given time (Sober�on & Peterson, 2005), so a species can
never occupy non-existent environmental conditions. Even
when the first circumstance is met, the assumption of a ‘static’
relationship can be violated if changes occur to the fundamen-
tal niche. The assumption of niche conservatism is supported
by a large volume of evidence (Peterson, 2011), although
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exceptions of rapid evolution are also accumulating (Salamin
et al., 2010). Rapid evolution of the fundamental niche could
occur frequently in the future, given the emergence of novel
environmental conditions and faster pace of human-induced
environmental changes. Therefore, enhanced model
extrapolation is needed for more reliable model predic-
tions (see solutions in Section IV.1).

(5) The need for a more dynamic view of species’
geographic distributions

Under natural rates of environmental change, barring major
stochastic events, a species’ geographic distribution could be
viewed as (or assumed to be) relatively stable over timescales
of decades. This stability is commonly summarized as current
or extant range maps (e.g. extant geographic range of Dasypus
novemcinctus compiled by IUCN; Loughry, McDonough &
Abba, 2014). This stable nature of geographic distributions
allows some flexibility of temporal mismatch between occur-
rences and environmental data, or congruence at a coarse
temporal extent. For example, many applications of
ENM/SDM conduct model training with occurrences across
a range of years and the mean environmental conditions
across the same temporal extent. In other words, the model
is built on the idea of a ‘static’ geographic distribution under
current conditions, and is used to predict a relatively static geo-
graphic distribution under future environmental conditions
(i.e. from static to static), or relatively more dynamic distribu-
tions when dispersal or other factors are considered (i.e. from
static to dynamic). This approach can be advantageous for
correlative modeling, without worrying too much about inac-
curacies caused by temporal mismatch between occurrences
and the environment. However, this advantage is lost or weak-
ened when a species’ geographic range is experiencing rapid
changes on shorter timescales and/or the environment is
changing rapidly, which can affect the inference of the associ-
ation between species’ distribution and suitable environmental
conditions. For example, a species with low dispersal capacity
could fail to track the shift in locations with suitable environ-
ments, in which case the modeling approach that uses multi-
decadal cumulative or mean data will more likely be affected
by the temporal mismatch between species’ occurrence and
suitable environments. Therefore, in the Anthropocene, a spe-
cies’ geographic distribution needs to be viewed in a more
dynamic manner, and new modeling approaches (e.g. from
dynamic to dynamic) will be needed to account for changes
in species’ ranges and the environment on fine temporal scales.

IV. WAYS TO IMPROVE ENM/SDM IN PRACTICE
IN THE CONTEXT OF HUMAN IMPACTS

We outline five major challenges for ENM/SDM in the con-
text of human impacts and propose strategies to mitigate or
address the challenges (Table 2).

(1) Enhance model extrapolation under novel
environmental conditions

Model extrapolation represents a significant challenge in
correlative modeling (Yates et al., 2018). Statistical textbooks
generally recommend avoiding model extrapolation owing
to potential inaccuracies in model predictions. However,
model extrapolation is likely unavoidable for many biological
and ecological studies and, with the various risks acknowl-
edged, can provide meaningful predictions in guiding natural
resource management and biodiversity conservation under
global change (ecological forecasting syndrome; Chen,
Liang & Feng, 2023), which is among the most frequent uses
of ENM/SDM.
Current modeling algorithms have different ‘behaviors’

towards model extrapolation. ‘Fishbowl models’ (e.g. minimum-
volume ellipsoid; Van Aelst & Rousseeuw, 2009) tend to
assume a regular ‘shape’ or boundary of the niche
(Loyola, 2012), beyond which the environmental conditions
are unsuitable for a species. These algorithms simply predict
zero probability of presence beyond the conditions of training
presences. Several regression algorithms are able to extrapo-
late by extending the response curve following the slope
obtained from training data, ultimately extending a fitted
model towards infinity along the axes of predictors (Qiao
et al., 2019). However, this type of extrapolation relies on
assumptions about the underlying relationship (e.g. unimodal
curve; Anderson, 2013), and predictions may be acceptable
when environmental conditions are similar to that of the train-
ing data; however, errors associated with extrapolation
increase as one moves further beyond the training data
(Fitzpatrick et al., 2018).
Several machine learning algorithms extrapolate beyond

the training data by ‘clamping’, which uses the boundary
prediction to substitute the predictions beyond the training
data (Qiao et al., 2019). This type of behavior could be con-
sidered as an intermediate option compared with the previ-
ous two (Anderson, 2013), and in certain cases may yield
less-extreme predictions (as opposed to, for example, zero
probabilities predicted by fishbowl models or high probabil-
ities predicted by a regression model with a monotonically
increasing extrapolation curve). However, clamping can also
be sensitive to the boundary conditions (Anderson, 2013).
For example, in extreme cases in which the boundary condi-
tion is predicted to be highly suitable or highly unsuitable,
one can derive overestimation or underestimation, respec-
tively, of a species’ potential distribution under novel envi-
ronmental conditions.
New approaches have been proposed in the literature to

improve model extrapolation. The main philosophy is
to incorporate biologically meaningful information in model
fitting, thus overcoming the limitation of the correlative
approaches. Such biologically meaningful information
(e.g. biological responses to climate) is expected to extrapo-
late better in novel environmental conditions compared with
a correlation-inferred relationship. First, this external infor-
mation could be about the shape of the fundamental niche,
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which can be assumed to be regular (e.g. an ellipsoid) as
opposed to irregular shapes (e.g. patterns learned from data
by machine learning algorithms). The shape of the funda-
mental niche, although seemingly a simple piece of informa-
tion, can serve as a strong framework in guiding model
extrapolation (Jiménez et al., 2019). Second, this shape
assumption can be fine-tuned to define the structure of a
response curve that determines quantitatively the probability
of presence as a response to environmental conditions. For
example, the response curve can be conceived as a plateau
model with three connected segments: uphill, horizontal,
and downhill (Brewer et al., 2016), which fits well with the
idea of an optimal range of conditions for a species and
reduced suitability away from the optimal ones.

Further, external information, such as experiments or
expert opinions, can be used to adjust the parameter estima-
tions of the conceptual models to improve their biological
connotation. For example, physiological limits may be used
to inform model extrapolation regarding conditions beyond
which the probability of presence is at a minimum (Brewer
et al., 2016). Similarly, laboratory experiments characterizing
species’ responses to limiting factors can be used to guide the
slope of the response curve under extrapolative conditions
(Feng et al., 2020). Importantly, successful implementation
of these approaches relies on the availability of bio-
logically meaningful information and well-defined links or
assumptions between this information and species’ geo-
graphic distributions. For example, temperature measured
in the laboratory could be used to define the shape of an eco-
logical niche or describe a response curve quantitatively. To
use such information in a real landscape, a corresponding
abiotic variable from a real landscape is needed to represent
the laboratory temperature. The establishment of such a link
is difficult, because laboratory experiments are usually
conducted under controlled (e.g. constant) conditions over
limited time periods (e.g. days) whereas environmental con-
ditions used in ENM/SDM can vary in complex patterns
and commonly represent the integration of responses to
conditions over longer time periods (e.g. months to years)
(Feng et al., 2020; Feng & Papeş, 2017). In a broader sense,
biological information could be extended to include
knowledge about related species. Building upon the theory
of phylogenetic niche conservatism (e.g. closely related
species with similar ecological niches; Peterson et al., 2011),
studies have shown improved model performance across
space (Castaño-Quintero et al., 2020) and time (Guillory &
Brown, 2021), by including information about related species
(Smith et al., 2019).

In addition, when no external information is available to
facilitate model forecasting, model extrapolation could be
enhanced through specialized model tuning (Muscarella
et al., 2014). Typically, model tuning is used to select optimal
settings based on model evaluation indices. The evaluation
indices can be calculated with independent testing data, but
more commonly a subset of species’ occurrence data with-
held from model training is used to calculate indices
(Peterson et al., 2011). A common practice for the latter

approach is to separate the training occurrences into multiple
subsets randomly and to use one subset in rotation for model
testing, in replicate runs (cross-validation). In contrast to ran-
dom subsetting, new methods are proposed to separate the
occurrences spatially or temporally, to evaluate models
under a transfer scenario where testing data and training
data have partial or no overlap in environmental space
(Roberts et al., 2017). Therefore, this transfer can involve
both model interpolation and extrapolation. The difference
in data separation methods can lead to different interpreta-
tions of model performance. If a model performs well with
spatial/temporal subsetting, it can be assumed to have better
transferability, giving the researcher higher confidence in the
model’s performance in a real transfer scenario. In theory,
data can also be separated in environmental space, which
would enhance the confidence of model extrapolation
(Valavi et al., 2019), although the ways in which partitioning
is done in environmental space will have complicated conse-
quences (Roberts et al., 2017).

As a minimum, if extrapolation is unavoidable, environ-
mental novelty needs to be quantified as a proxy to infer
the uncertainty of predictions. Previous studies have sug-
gested that model accuracy decays with environmental nov-
elty (Fitzpatrick et al., 2018; Qiao et al., 2019). Essentially,
the environmental novelty can be viewed as dissimilarity
between environmental conditions of training data and the
conditions on which the model is to be projected. Such dis-
similarity can be calculated as distances to the reference data
set (Elith, Kearney & Phillips, 2010) or in refined ecological
settings (the relative novelty of a set of conditions in the con-
text of the reference data cloud; Owens et al., 2013).

(2) Incorporate anthropogenic-related predictors in
the modeling process

It is increasingly important to account for human-related fac-
tors that are crucial in determining species’ geographic distri-
butions. For example, Gallardo, Zieritz & Aldridge (2015)
trained models with five anthropogenic variables as proxies
of the human footprint, and found that such variables
explained a substantial amount (23% on average) of invasive
species’ distributions. Other anthropogenic variables that are
less commonly used in models (e.g. artificial light, sound, pol-
lution) may have affected species distributions at large spatial
extents (Escobar, Awan & Qiao, 2015). For example, artifi-
cial light at night and air pollution are known to negatively
affect bird migrations (Overton et al., 2022; La Sorte
et al., 2022). The improved nocturnal visibility caused by
coastal development can affect the timing and distribution
of foraging opportunities for shorebirds (Dwyer et al., 2013).

To incorporate anthropogenic factors into ENM/SDM
applications, the data must meet some conditions from a
practical perspective. In the simplest manner, the data for-
mat needs to be compatible with that of other commonly
used climatic layers (e.g. gridded data at the same spatial res-
olution as the non-anthropogenic data layers). The spatial
extent of anthropogenic factors should cover the geographic
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range of the species or the spatial extent of sampling that
characterizes the species’ distribution. A larger spatial extent
(e.g. global or continental) of anthropogenic factors can guar-
antee broader applications in ENM/SDM studies. The tem-
poral dimension of anthropogenic factors can be important
as well, because many human activities are highly variable,
and in some cases are under accelerating change (Steffen
et al., 2015). Therefore, high temporal resolution of the
anthropogenic variables is preferred to capture the dynamics
of certain anthropogenic factors; however, to achieve tempo-
ral matching, species’ occurrences would need to be recorded
with a temporal resolution similar to that of the anthropo-
genic factors.

We have compiled a list of anthropogenic variables that
show potential for ENM/SDM studies (Table 3). Most of
these data are available at global extents with at least moder-
ate spatial resolution (e.g. 1 km), and thus can be combined
with other commonly used abiotic layers (e.g. climate).
Future projections of a subset of those data are available.
Some of these data layers represent a general index of human
impact, such as human footprint, calculated as functions of
multiple other human-related factors. By contrast, other
layers represent different dimensions of human societies
more directly, such as human population density, human
migration, and gross domestic product (GDP). The list also
covers major anthropogenic changes of the environment,
such as global air, light and noise pollution, pesticide usage,
and nitrogen and phosphorus fertilizer applications. Lastly,
we also included global data representing major modifica-
tions of the Earth’s surface: cropland maps, transportation
infrastructures, and dams. Such anthropogenic variables
can be used directly or modified further, for example by cal-
culating the percentage of cropland or the distance to
highways.

From an application perspective, including additional pre-
dictors in a model can potentially increase model complexity.
In simple scenarios in which human effects are positive or
negative for a species’ distribution (Bennett et al., 2002;
Gallardo et al., 2015), anthropogenic predictors would be
added as simple terms (e.g. linear) to the existing predictors.
On the other hand, when anthropogenic factors have variable
effects (Toews, Juanes & Burton, 2017, 2018) or potentially
interact with other predictors, the model would need to include
sufficiently complex response types in the fitting process.

The use of anthropogenic factors in ENM/SDM is not
restricted to model training: they can be applied in model
forecasting, similar to forecasts of potential distributions
under various climate change scenarios. In particular, future
land-use and land-cover projections through 2100 (with
extensions to 2300) are available from the Land-Use Harmo-
nization project that were generated under the Shared Socio-
economic Pathways greenhouse gas scenarios of the World
Climate Research Program Coupled Model Intercompari-
son Project (CMIP6) (Hurtt et al., 2020; Rocha, Vale &
Lima-Ribeiro, 2021). This data set covers 12 land-use and
land-cover classes, including natural vegetation, agriculture,
and urban areas. The future projections of climate, land

use, and land cover are typically built on socioeconomic
scenarios (e.g. human population growth and economic
development) and are available for various political units or
finer spatial resolutions (e.g. Hauer & CIESIN, 2021;
Gao, 2020; Shaykheeva et al., 2016).

(3) Incorporate environmental data at fine spatio-
temporal scale to capture anthropogenic changes

Climatic conditions are known to play major roles in deter-
mining species’ geographic distributions at large spatial
extents (Pearson & Dawson, 2003). Thus, it is common prac-
tice to include climatic variables in ENM/SDM, and most
applications in the literature rely onmulti-decadal mean con-
ditions, such as the 1970–2000 means in Worldclim v.2.1
(Fick & Hijmans, 2017) or 1979–2013 means for CHELSA
v.1.2 (Karger et al., 2018), likely due to the convenience of
their global coverage and ‘plug and play’ data format.
However, recent rapid environmental changes, within the

last 1–2 decades, may not be captured by the commonly used
decadal data and thus may misrepresent relationships
between species’ current geographic distributions and the
environments. Rapid climate changes are characterized not
only by mean conditions, but also by the frequency and
intensity of extreme events, such as droughts and heatwaves
(Mann & Gleick, 2015; Jones et al., 2018). Those changes in
climatic conditions are prominent in influencing species’ geo-
graphic distributions: global warming leads to gradual distri-
bution shifts, and extreme events can affect population
dynamics rapidly and are known to be influential in deter-
mining limits of species’ geographic ranges (Smale &
Wernberg, 2013; Osland et al., 2020). Human-induced cli-
matic effects could be global or regional, or at landscape
scales, such as city heat island effects (Phelan et al., 2015), with
important implications for species’ ecology and distribution
(Hamblin et al., 2017; Battles & Kolbe, 2019). Therefore,
environmental data at fine spatio-temporal scales are needed
to capture the environmental changes caused by human
activities.
Ideally, the environmental data should be matched tem-

porally with species’ occurrences to obtain time-specific envi-
ronmental values associated with species’ occurrences. The
precision of temporal matching can be increased from con-
sidering only year, to month, to exact matching of the day,
to be precise in matching relevant environmental conditions
to occurrences. The time-specific approach was found to
quantify better species’ responses to temporal variation in
environmental conditions (Gschweng et al., 2012; Williams,
Willemoes & Thorup, 2017; Smeraldo et al., 2018;
Ingenloff & Peterson, 2021). When precise temporal match-
ing is not possible, an alternative approach is to calculate
mean conditions across moving temporal windows, as
opposed to using static, multi-decadal mean conditions. In
addition, species’ occurrences also need to be matched with
environmental data at high spatial resolution so that varia-
tion in environmental conditions is not blurred by coarse spa-
tial resolution of data. Note that this is not meant to match a
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precise location with its environment at that precise moment,
because such data are not available for most species across
their ranges, and data are commonly aggregated to slightly
coarse spatial resolutions. Another caveat is that, whenmatch-
ing species’ presence data with the environmental conditions,
such presence data are assumed to represent the long-term
persistence of a species, as opposed to short-term presence in
unsuitable ormarginal conditions (e.g. occasional observations
outside a known range or a sink population that goes extinct).

The feasibility of the high spatio-temporal matching
approach depends critically on data availability. Among
environmental data that are publicly available, data sets with
high spatial (e.g. <1 km) and temporal resolution (e.g. daily)
are relatively rare, particularly at global or continental
extents and moderate temporal extents (e.g. from 2000 to
present). Existing data sets are characterized by trade-offs
between resolution and extent and between space and time.
For example, the CHELSA climatic data set has daily temper-
ature at 30-arc-second resolution (�800 m) at global extent,
but is based on 20-year averages (as opposed to every day
across the 20 years). PRISM, another climatic data set, has
daily and monthly data on temperature at yearly scale from
1981 to present, but is only available for the extent of the
USA. Note that such climatic data (e.g. temperature, precip-
itation) are not actual measurements in each cell of the grid;
instead, the cell values are conditions inferred through spatial
interpolation from weather station measurements, thus
containing some uncertainties. Compared with the tradi-
tional weather station and interpolated climate data,
remote-sensing satellites can provide good alternatives for
environments at relatively high spatial (e.g. 500 m) and tem-
poral resolution (daily) at global extent, with the limitation
that most data are only available for the last 2–3 decades.

(4) Consider anthropogenic factors in the design of
model training domains

The spatial extent across which correlative models are to be
trained is a key determinant of the quality of many such
models (Barve et al., 2011), because that area determines
the environmental variability of pseudo-absences or back-
ground data from which the (relative) probabilities of pres-
ences are calculated by the models (Phillips et al., 2009).
Until this realization (Anderson & Raza, 2010; Giovanelli
et al., 2010; Barve et al., 2011), training areas for models were
chosen for convenience, and too often without justification
(Feng et al., 2019). The BAM conceptual framework for dis-
tributional ecology (Sober�on & Peterson, 2005) points to
the area that has been accessible to the species over relevant
time periods (termed M) as the appropriate area over which
correlative models should be calibrated (Barve et al., 2011), as
it represents the set of sites where the species has likely been
present, and has had the opportunity to establish populations
or not, depending in large part on the suitability of the condi-
tions manifested there.

However, even with these realizations, the current practice
in distributional ecology is to make proxy assumptions about

the extent and characteristics of M. Perhaps most commonly,
researchers use a distance buffer around the known occur-
rence points as an approximation of species’ dispersal ‘reach’
(Feng & Papeş, 2015); others delineate areas guided by bio-
geographic knowledge of the species, or use ecoregions or
biotic regions (Cooper & Sober�on, 2018). These proxies are
generally unsatisfactory because they assume equal rates of
diffusion in all directions, or depend on other species’ range
boundaries being a relevant indicator of dispersal potential
for a particular species. These assumptions can be further
challenged by anthropogenic changes of the natural land-
scape that subsequently affect species’ dispersal ability. For
example, highways can limit species’ dispersal; on the con-
trary, roads can serve as dispersal corridors for some species,
either naturally or facilitated by humans (Tikka, Högman-
der & Koski, 2001; Brown et al., 2006; Rauschert,
Mortensen & Bloser, 2017).
A recent publication, however, offered an intriguing and

more satisfactory path forward in this aspect of modeling
methodology. Machado-Stredel, Cobos & Peterson (2021)
created a simulation environment that included niche aspects
(via an initial, simple assumption about the shape and size of
the niche of the species in question), dispersal ability, and envi-
ronmental characteristics of sites through time. Being explic-
itly designed for estimating M, this simulation platform
allows the user to create ‘hard’ dispersal barriers (e.g. a road
or a fence), and could be modified to take current climate
change processes into account. The simulated M will
critically depend on timespan of interest and dispersal
parameters (e.g. dispersal kernel and dispersal events)
(Machado-Stredel et al., 2021). Careful consideration of how
anthropogenic factors would affect a particular species could
guide development of simulations of M that would explicitly
quantify human effects, thus avoiding the assumption-based
approaches currently in use by many researchers.

(5) Incorporate human-induced dynamics of biotic
interactions in modeling species’ geographic
distributions

Incorporating biotic factors in ENM/SDM relies on the
assumption that their roles in shaping species’ geographic
distribution at large spatial scale are comparable to those
of abiotic factors, although this point is often debated in
the literature (Sober�on & Nakamura, 2009; de Araújo,
Marcondes-Machado & Costa, 2014; Fraterrigo, Wagner &
Warren, 2014). The difficulty in assessing the role of biotic
factors partly lies on the complexities with which biotic
relationships could vary across space and through time
[e.g. pollination (Burkle & Alarc�on, 2011); herbivory
(Ruttenberg et al., 2019)] and multi-species interactions
that can be determining a focal species’ distribution.
Nevertheless, substantial changes in biotic communities
potentially induced by anthropogenic activities warrant
more formal consideration of biotic factors.
A common practice is to use the presence, abundance, or

suitability of relevant species, together with other abiotic
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variables, as predictors in correlative models. Examples
include use of distribution of prey species as predictors of
the suitability of predator species (Gherghel, Brischoux &
Papeş, 2018), pollinators as predictors of plant species
(Giannini et al., 2013), or host species presence as predictors
of presence of parasites or viruses (Giannini et al., 2013).
Inclusion of species as predictors requires prior knowledge
of species’ interactions, and relies on the assumption that
the species included can facilitate or limit a focal species’
range. The effectiveness of this approach could depend on
multiple factors, such as strength of the assumed biotic
relationship at the focal spatial scale (Sober�on &
Nakamura, 2009) and the spatial variation of the biotic rela-
tionship (Early & Keith, 2019). Another limitation is the
assumed unidirectional interaction, e.g. the species used as
predictor is treated as a fixed variable that is not influenced
by the distribution of the focal species (Pollock et al., 2014).

Another approach is to model multiple species’ distribu-
tions simultaneously with a joint species distribution model
(Pollock et al., 2014). This correlative approach tries to quan-
tify co-occurrences of multiple species, with biotic interac-
tions inferred from the residuals, after accounting for
abiotic factors. The major advantage here is the ability to
partition out the contribution of abiotic factors, leaving the
residuals to account for other ecological or evolutionary pro-
cesses, including biotic interactions. On the other hand, the
causal relationship of species’ interactions is not explicitly
modeled, which is similar to correlative approaches, thus it
can be difficult to interpret the estimated species association
(Zurell, Pollock & Thuiller, 2018), which could be scale-
dependent (König et al., 2021).

Compared with correlative quantification of biotic inter-
actions, the trait-based approach can be promising in
quickly inferring biotic interactions (e.g. trophic interac-
tions) when empirical data are not available, with the
potential advantage of higher transferability across space
and time (Caron et al., 2022). Information on biotic interac-
tions can also be organized and synthesized with a network
modeling approach to make refined quantifications and
predictions of biotic interactions across space and time
(Strydom et al., 2021; Marjakangas et al., 2022). Further,
the rapidly growing databases of functional traits and spe-
cies interactions, such as Mangal (Poisot et al., 2016) and
GloBi (Poelen, Simons & Mungall, 2014), can make this
modeling approach more broadly applicable to studying
the role of biotic interactions in species’ geographic distri-
bution across scales.

From a macroecology perspective, the biotic networks are
likely becoming simpler over time, at least globally, because
of biotic homogenization (Rahel, 2000; Clavel, Julliard &
Devictor, 2011; Magurran et al., 2015) and mass extinctions
(Ceballos et al., 2015) caused by anthropogenic factors. As
total numbers of species decrease with extinction, within
the remaining species, a subset becomes abundant and wide-
spread (e.g. generalist species, invasive species), creating a
simplified biotic network at global scales. Studies have found
weaker predator–prey interactions in urban areas compared

with those in rural environments (Early & Keith, 2019).
Quantification of biotic interactions, understanding their
role in species geographic distributions, and their inclusion
in ENM/SDM could thus become easier tasks, owing to
the misfortune of biotic interactions simplified by human
factors.

V. CONCLUSIONS

(1) Human factors have profoundly affected and are still
increasingly affecting species’ geographic distributions,
directly or indirectly, via various biological, ecological, and
evolutionary processes at a global scale.
(2) The three main factors that determine geographic pat-
terns of species, i.e. biotic interactions (B), abiotic conditions
(A), and dispersal ability (M) (also known as the BAM dia-
gram), need to be reconsidered to understand and quantify
species’ distributions in a world with a pervasive signature
of human impacts.
(3) Existing assumptions and theories of species’ geographic
distributions are challenged by human factors. As such, a
more dynamic view of species’ geographic distributions is
needed in the BAM diagram: novel biotic interactions and
environmental conditions as well as species’ adaptation,
and restricted or expanded dispersal capacities and modified
landscape connectivities.
(4) Future studies should incorporate anthropogenic factors
and consider their impacts in B, A, and M (Human-
influenced BAM or Hi-BAM) in modeling and forecasting
species’ distributions.
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de Araújo, C. B., Marcondes-Machado, L. O. & Costa, G. C. (2014). The
importance of biotic interactions in species distribution models: a test of
the Eltonian noise hypothesis using parrots. Journal of Biogeography 41, 513–523.

de Sherbinin, A., Levy, M., Adamo, S., MacManus, K., Yetman, G., Mara, V.,
Razafindrazay, L., Goodrich, B., Srebotnjak, T., Aichele, C. &
Pistolesi, L. (2015). Global Estimated Net Migration Grids by Decade: 1970-2000.
NASA Socioeconomic Data and Applications Center (SEDAC), Palisades. https://
doi.org/10.7927/H4319SVC.

Di Marco, M., Boitani, L., Mallon, D., Hoffmann, M., Iacucci, A.,
Meijaard, E., Visconti, P., Schipper, J. & Rondinini, C. (2014). A
retrospective evaluation of the global decline of carnivores and ungulates.
Conservation Biology 28, 1109–1118.

Di Marco, M. & Santini, L. (2015). Human pressures predict species’ geographic
range size better than biological traits. Global Change Biology 21, 2169–2178.

Diamond, S. E. (2017). Evolutionary potential of upper thermal tolerance:
biogeographic patterns and expectations under climate change. Annals of the New
York Academy of Sciences 1389, 5–19.

Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. (2017).
Rapid evolution of ant thermal tolerance across an urban-rural temperature cline.
Biological Journal of the Linnean Society 121, 248–257.

Ditmer, M. A., Stoner, D. C., Francis, C. D., Barber, J. R., Forester, J. D.,
Choate, D. M., Ironside, K. E., Longshore, K. M., Hersey, K. R.,
Larsen, R. T., McMillan, B. R., Olson, D. D., Andreasen, A. M.,
Beckmann, J. P., Holton, P. B., ET AL. (2021). Artificial nightlight alters the
predator–prey dynamics of an apex carnivore. Ecography 44, 149–161.

Du, Y., Liu, X., Dong, X. & Yin, Z. (2022). A review on marine plastisphere:
biodiversity, formation, and role in degradation. Computational and Structural

Biotechnology Journal 20, 975–988.
Dumyahn, S. L. & Pijanowski, B. C. (2011). Soundscape conservation. Landscape
Ecology 26, 1327–1344.

Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. (2013). Shedding
light on light: benefits of anthropogenic illumination to a nocturnally foraging
shorebird. The Journal of Animal Ecology 82, 478–485.

Biological Reviews (2024) 000–000 © 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

18 Xiao Feng and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13077, W

iley O
nline L

ibrary on [10/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.32942/X2DW22
https://doi.org/10.7927/H4H70CRF
https://doi.org/10.7927/H4H70CRF
https://doi.org/10.7927/H4VD6WCT
https://doi.org/10.7927/H4VD6WCT
https://doi.org/10.7927/H4319SVC
https://doi.org/10.7927/H4319SVC


Early, R. & Keith, S. A. (2019). Geographically variable biotic interactions and
implications for species ranges. Global Ecology and Biogeography 28, 42–53.

Elith, J., Kearney, M. & Phillips, S. (2010). The art of modelling range-shifting
species. Methods in Ecology and Evolution 1, 330–342.

Ellis, E. C. (2015). Ecology in an anthropogenic biosphere. Ecological Monographs 85,
287–331.

Ellis, E. C.,Goldewijk, K. K., Siebert, S., Lightman, D.&Ramankutty, A. N.

(2014). Anthropogenic Biomes of the World, Version 2: 2000. NASA Socioeconomic Data
and Applications Center (SEDAC), Palisades. https://doi.org/10.7927/
H4D798B9.

Elmhagen, B., Berteaux, D., Burgess, R. M., Ehrich, D., Gallant, D.,
Henttonen, H., Ims, R. A., Killengreend, S. T., Niemimaa, J., Norén, K.,
Ollila, T., Rodnikova, A., Sokolov, A. A., Sokolova, N. A.,
Stickney, A. A., ET AL. (2017). Homage to Hersteinsson and Macdonald: climate
warming and resource subsidies cause red fox range expansion and Arctic fox
decline. Polar Research 36(sup1), 3.

Escobar, L. E., Awan, M. N. & Qiao, H. (2015). Anthropogenic disturbance
and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): using ecological
niche modeling and nighttime light satellite imagery. Biological Conservation 191,
400–407.

Essington, T. E., Moriarty, P. E., Froehlich, H. E., Hodgson, E. E.,
Koehn, L. E., Oken, K. L., Siple, M. C. & Stawitz, C. C. (2015). Fishing
amplifies forage fish population collapses. Proceedings of the National Academy of Sciences
of the United States of America 112, 6648–6652.

Fahnenstiel, G. L., Lang, G. A.,Nalepa, T. F. & Johengen, T. H. (1995). Effects
of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in
Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21, 435–448.

Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. (2019). Atlantic
multidecadal oscillations drive the basin-scale distribution of Atlantic bluefin tuna.
Science Advances 5, eaar6993.

Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D.,
Baugh, K., Portnov, B., Rybnikova, N. A. & Furgoni, R. (2016).
Supplement to: The New World Atlas of Artificial Night Sky Brightness. V. 1.1.
GFZ Data Services. Electronic file available at https://dataservices.gfz-potsdam.
de/contact/showshort.php?id=escidoc:1541893&contactform Accessed
17.01.2023.
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Meschede, A., Juste, J., Prüger, J., Puig-Montserrat, X. & Russo, D.

(2018). Ignoring seasonal changes in the ecological niche of non-migratory species
may lead to biases in potential distribution models: lessons from bats. Biodiversity
and Conservation 27, 2425–2441.

Smith, A. B.,Godsoe, W.,Rodrı́guez-S�anchez, F.,Wang, H.-H.&Warren, D.

(2019). Niche estimation above and below the species level. Trends in Ecology &

Evolution 34, 260–273.
Smith, M. D., Asche, F., Guttormsen, A. G. &Wiener, J. B. (2010). Food safety.
Genetically modified salmon and full impact assessment. Science 330, 1052–1053.

Soberon, J. (2007). Grinnellian and Eltonian niches and geographic distributions of
species. Ecology Letters 10, 1115–1123.

Sober�on, J. & Arroyo-Peña, B. (2017). Are fundamental niches larger than the
realized? Testing a 50-year-old prediction by Hutchinson. PLoS ONE 12, e0175138.

Sober�on, J. & Nakamura, M. (2009). Niches and distributional areas: concepts,
methods, and assumptions. Proceedings of the National Academy of Sciences of the

United States of America 106, 19644–19650.
Sober�on, J. & Peterson, A. T. (2005). Interpretation of models of fundamental
ecological niches and species’ distributional areas. Biodiversity Informatics 2, 1–10.

Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A.,
Vermote, E. F. & Townshend, J. R. (2018). Global land change from 1982 to
2016. Nature 560, 639–643.

Sreekar, R., Corlett, R. T., Dayananda, S., Goodale, U. M., Kilpatrick, A.,
Kotagama, S. W., Koh, L. P. & Goodale, E. (2017). Horizontal and vertical
species turnover in tropical birds in habitats with differing land use. Biology Letters
13, 20170186.

Staal, A., Flores, B. M., Aguiar, A. P. D., Bosmans, J. H. C., Fetzer, I. &
Tuinenburg, O. A. (2020). Feedback between drought and deforestation in the
Amazon. Environmental Research Letters 15, 044024.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. (2015).
The trajectory of the Anthropocene: the great acceleration. The Anthropocene Review
2, 81–98.

Steffen, W., Crutzen, J. &McNeill, J. R. (2007). The Anthropocene: are humans
now overwhelming the great forces of nature? AMBIO: A Journal of the Human

Environment 36, 614–621.
Storfer, A. (1999). Gene flow and endangered species translocations: a topic
revisited. Biological Conservation 87, 173–180.

Stott, P. (2016). How climate change affects extreme weather events. Science 352,
1517–1518.

Strauss, S. Y., Lau, J. A. & Carroll, S. P. (2006). Evolutionary responses of natives
to introduced species: what do introductions tell us about natural communities?
Ecology Letters 9, 357–374.

Strydom, T., Catchen, M. D., Banville, F., Caron, D., Dansereau, G.,
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